Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension
نویسندگان
چکیده
منابع مشابه
Non-negatively Curved Cohomogeneity One Manifolds
Non-negatively Curved Cohomogeneity One Manifolds Chenxu He Prof. Wolfgang Ziller, Advisor A Riemannian manifold M is called cohomogeneity one if it admits an isometric action by a compact Lie group G and the orbit space is one dimension. Many new examples of non-negatively curved manifolds were discovered recently in this category. However not every cohomogeneity one manifold carries an invari...
متن کاملManifolds of Cohomogeneity Two
First, a word from our sponsor (particle physics). The mathematical reader should not expect to understand the physics, but (paraphrasing A. N. Varchenko) just let the words wash over you like music. Acharya & Witten [1] and Atiyah & Witten [2] have demonstrated that singularities in G2 holonomy manifolds 1 can compactify M -theory yielding effective quantum field theories in 3+1 dimensional Mi...
متن کاملTopology of Non-negatively Curved Manifolds
An important question in the study of Riemannian manifolds of positive sectional curvature is how to distinguish manifolds that admit a metric with non-negative sectional curvature from those that admit one of positive curvature. Surprisingly, if the manifolds are compact and simply connected, all known obstructions to positive curvature are already obstructions to non-negative curvature. On th...
متن کاملNegatively Ricci Curved Manifolds
In this paper we announce the following result: “Every manifold of dimension ≥ 3 admits a complete negatively Ricci curved metric.” Furthermore we describe some sharper results and sketch proofs.
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2013
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-013-1190-5